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Announcements

• Assignment 3, Part 2 will be released today after class
• YEAH Hours are today at 3pm on Zoom
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https://stanford.zoom.us/j/5416618770?pwd=dC84V1VqbmRvQXMvN1FSOFNIU2dNdz09
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Coin Sequences

• You’re playing a (rather boring) game in which you flip some 

number of coins one by one and see whether you get heads or tails

• You’d like to know all of the possible sequences you might flip
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Coin Sequences This is called a decision tree: 
at each point we have 

branching decisions.

HH HT TH TT

Flip heads Flip tails

Flip tailsFlip headsFlip tailsFlip heads
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Coin Sequences

HH HT TH TT

Flip heads Flip tails

Flip tailsFlip headsFlip tailsFlip heads

Width of the tree:
Number of options
at each decision



Coin Sequences

HH HT TH TT

Flip heads Flip tails

Flip tailsFlip headsFlip tailsFlip heads

Number of Flips
Remaining

2

1

0

Recursive cases:
Add H or T to sequence



Coin Sequences

HH HT TH TT

Flip heads Flip tails

Flip tailsFlip headsFlip tailsFlip heads

Number of Flips
Remaining

2

1

0

Recursive cases:
Add H or T to sequence

Base case:
Out of flips



Two Types of Recursion

Basic recursion

• One repeated task that builds up a 
solution as you come back up the call 
stack

• The final base case defines the initial 
seed of the solution and each call 
contributes a little bit to the solution

• Initial call to the recursive function 
produces the final solution
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Backtracking recursion

• Build up many possible solutions 
through multiple recursive calls at 
each step

• Seed the initial recursive call with an 
“empty” solution

• At each base case, you have a 
potential solution

factorial(2)

factorial(1)

factorial(0)



Solution Code for Coin Sequences 
void generateSequenceHelper(int flipsRemaining, string sequence) {

    // Base case: flipsRemaining = 0, no more flips

    if (flipsRemaining == 0) {

        cout << sequence << endl;

    } else {

        // Recursive cases (when flipsRemaining > 0)

        generateSequenceHelper(flipsRemaining - 1, sequence + 'H'); // Add H to the sequence

        generateSequenceHelper(flipsRemaining - 1, sequence + 'T'); // OR add T to the sequence

    }

}

void generateSequences(int numCoins) {

    generateSequenceHelper(numCoins, "");

}
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int main () {
generateSequences(3);
return 0;

}
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if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HTH”
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HTH”
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HTH”
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HTH”
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HTT”
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HTT”
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HTT”
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH
HTT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HTT”
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH
HTT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HTT”
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH
HTT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH
HTT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH
HTT

Console:
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH
HTT

Console:



74

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

HHH
HHT
HTH
HTT

Console:
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

HHH
HHT
HTH
HTT

Console:
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

HHH
HHT
HTH
HTT

Console:
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH
HTT

Console:
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH
HTT

Console:
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH
HTT

Console:
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH
HTT

Console:
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

HHH
HHT
HTH
HTT

Console:
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH
HHT
HTH
HTT

Console:
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH
HHT
HTH
HTT

Console:
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH
HHT
HTH
HTT

Console:
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH
HHT
HTH
HTT

Console:
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

HHH
HHT
HTH
HTT

Console:
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“THH”

HHH
HHT
HTH
HTT

Console:
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“THH”

HHH
HHT
HTH
HTT

Console:
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“THH”

HHH
HHT
HTH
HTT

Console:
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“THH”

HHH
HHT
HTH
HTT
THH

Console:
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“THH”

HHH

Console:
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH

Console:

HHH
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH

Console:
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

HHH
HHT
HTH
HTT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“THT”

HHH
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HTH
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THH
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“THT”

HHH
HHT
HTH
HTT
THH
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“THT”

HHH
HHT
HTH
HTT
THH
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“THT”

HHH
HHT
HTH
HTT
THH
THT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“THT”

HHH
HHT
HTH
HTT
THH
THT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH
HHT

Console:

HHH
HHT
HTH
HTT
THH
THT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH
HHT

Console:

HHH
HHT
HTH
HTT
THH
THT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

HHH
HHT
HTH
HTT
THH
THT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

HHH
HHT
HTH
HTT
THH
THT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

HHH
HHT
HTH
HTT
THH
THT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”HHH
HHT
HTH
HTT
THH
THT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”HHH
HHT
HTH
HTT
THH
THT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”HHH
HHT
HTH
HTT
THH
THT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”HHH
HHT
HTH
HTT
THH
THT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

HHH
HHT
HTH
HTT
THH
THT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“TTH”

HHH
HHT
HTH
HTT
THH
THT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“TTH”

HHH
HHT
HTH
HTT
THH
THT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“TTH”

HHH
HHT
HTH
HTT
THH
THT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“TTH”

HHH
HHT
HTH
HTT
THH
THT
TTH
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“TTH”

HHH
HHT
HTH
HTT
THH
THT
TTH
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”HHH
HHT
HTH
HTT
THH
THT
TTH
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”HHH
HHT
HTH
HTT
THH
THT
TTH
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

HHH
HHT
HTH
HTT
THH
THT
TTH
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“TTT”

HHH
HHT
HTH
HTT
THH
THT
TTH



119

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“TTT”

HHH
HHT
HTH
HTT
THH
THT
TTH
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“TTT”

HHH
HHT
HTH
HTT
THH
THT
TTH
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH
HTT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“TTT”

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH
HTT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“TTT”

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH
HTT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”HHH
HHT
HTH
HTT
THH
THT
TTH
TTT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH
HTT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”HHH
HHT
HTH
HTT
THH
THT
TTH
TTT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH
HTT

Console:

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH
HTT

Console:

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

HHH
HHT
HTH
HTT

Console:

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

HHH
HHT
HTH
HTT

Console:

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT
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int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

HHH
HHT
HTH
HTT

Console:

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT
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int main () {
generateSequences(3);
return 0;

}

main()

HHH
HHT
HTH
HTT

Console:

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT
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int main () {
generateSequences(3);
return 0;

}

main()

HHH
HHT
HTH
HTT

Console:

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT
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int main () {
generateSequences(3);
return 0;

}

main()

HHH
HHT
HTH
HTT

Console:

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT
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HHH
HHT
HTH
HTT

Console:

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT



3 Problems to Solve with Backtracking

1. Generate all solutions to a problem or count number of solutions

2. Find one specific solution or prove that one exists

3. Find the best possible solution to a problem

134

All of these involve exploring many possible 
solutions, rather than proceeding down a linear 

path towards one solution.



Word Jumble

• We’d like to print every ordering of “TEYPT” to solve the puzzle

• This is much like coin sequences, but instead of choosing H or T, we 

are choosing a letter at each step

135



Word Jumble - ‘tca’
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“”



Word Jumble - ‘tca’
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“”

“t” “a”“c”



Word Jumble - ‘tca’
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“”

“t” “a”“c”

“tc” “ta” “ct” “ca” “at” “ac”



Word Jumble - ‘tca’
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“”

“t” “a”“c”

“tc” “ta”

“tca” “tac”

“ct” “ca”

“cta” “cat”

“at” “ac”

“atc” “act”



Word Jumble - ‘tca’
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“”

“t” “a”“c”

“tc” “ta”

“tca” “tac”

“ct” “ca”

“cta” “cat”

“at” “ac”

“atc” “act”

Recursive cases:
Decide what letter to add



Word Jumble - ‘tca’
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“”

“t” “a”“c”

“tc” “ta”

“tca” “tac”

“ct” “ca”

“cta” “cat”

“at” “ac”

“atc” “act”

Recursive cases:
Decide what letter to add

Base case:
Out of letters



Permutations Solution Code 
void generatePermutationsHelper(string lettersRemaining, string sequence) {

    // Base case: lettersRemaining = 0, no more letters to choose from

    if (lettersRemaining.length() == 0) {

        cout << sequence << endl;

    } else {

        // Many recursive cases (when lettersRemaining > 0)

        for (int i = 0; i < lettersRemaining.length(); i++) {

            char letter = lettersRemaining[i]; // choose one of our remaining letters to build on sequence

            generatePermutationsHelper(lettersRemaining.substr(0, i) + lettersRemaining.substr(i + 1), 

sequence + letter);

        }

    }

}

void generatePermutations(string word) {

    generatePermutationsHelper(word, "");

}

142



Takeaways

• "Choose / explore / unchoose" pattern in backtracking

143

for (int i = 0; i < lettersRemaining.length(); i++) {

// choose a letter

char letter = lettersRemaining[i];

// explore this choice by making a recursive call

generatePermutationsHelper(lettersRemaining.substr(0, i) + 

lettersRemaining.substr(i + 1), sequence + letter)

// unchoose this letter by not including it in our sequence next loop

}



Takeaways

• "Choose / explore / unchoose" pattern in backtracking

• It is important to keep track of the decisions we've made so far and 

the decisions we have left to make

144

void generatePermutationsHelper(string lettersRemaining, string sequence) {
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“tca”

“”string sequence
string lettersRemaining 
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“tca”

“t”

“”

“ca”

“c”

“ta”

“a”

“tc”

string sequence
string lettersRemaining 
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“tca”

“t”

“tc” “ta”

“”

“a” “c”

“ca”

“c”

“ct” “ca”

“a” “t”

“ta”

“a”

“at” “ac”

“c” “t”

“tc”

string sequence
string lettersRemaining 
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“tca”

“t”

“tc” “ta”

“tca” “tac”

“”

“” “”

“a” “c”

“ca”

“c”

“ct” “ca”

“cta” “cat”

“” “”

“a” “t”

“ta”

“a”

“at” “ac”

“atc” “act”

“” “”

“c” “t”

“tc”

string sequence
string lettersRemaining 



Takeaways

• "Choose / explore / unchoose" pattern in backtracking

• It is important to keep track of the decisions we've made so far and 

the decisions we have left to make

149

void generatePermutationsHelper(string lettersRemaining, string sequence) {



Takeaways

• "Choose / explore / unchoose" pattern in backtracking

• It is important to keep track of the decisions we've made so far and 

the decisions we have left to make

• Backtracking recursion can have variable branching factors at each 

level

150

“”

“T” “E” “T”“P”“Y”

“TE” “TT”“TP”“TY” …



3 Problems to Solve with Backtracking

1. Generate all solutions to a problem or count number of solutions

2. Find one specific solution or prove that one exists

3. Find the best possible solution to a problem

151

All of these involve exploring many possible 
solutions, rather than proceeding down a linear 

path towards one solution.



3 Problems to Solve with Backtracking

1. Generate all solutions to a problem or count number of solutions

2. Find one specific solution or prove that one exists

3. Find the best possible solution to a problem

152

All of these involve exploring many possible 
solutions, rather than proceeding down a linear 

path towards one solution.



Shrinkable Words

• A shrinkable word is a word that can be reduced down to one letter 

by removing one letter at a time, leaving a valid word at each step

• Idea: Let’s use a decision tree to remove letters and determine if a 

word is shrinkabe!
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Shrinkable Words Decision Tree
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“cart”

“art” “crt” “car”“cat”

“rt” “ar”“at” “rt” “cr”“ct” “at” “ca”“ct” “ar” “ca”“cr”

“a” “t” “a” “r” “r” “t” “c” “t” “c” “r” “a” “t” “c” “t” “c” “a” “a” “r” “c” “r” “c” “a”“r” “t”



Shrinkable Words

Base cases:

• We reach an invalid word (failure)
• We get down to a single-letter word (success)

Recursive cases:

• The word is shrinkable if you can remove any letter and get a 
shrinkable word

• The word is not shrinkable if no matter what letter you remove, it’s 
not shrinkable
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Lexicon

How do we check if a word is valid? We have an ADT for that:

#include “lexicon.h” (documentation here)

Lexicon lex("res/EnglishWords.txt"); // create from file

lex.contains("koala"); // returns true

lex.contains("zzzzz"); // returns false

// returns true if there are any words starting with "fi" in the lexicon

lex.containsPrefix("fi");
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https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1136/materials/cppdoc/Lexicon-class.html


Solution

bool isShrinkable(Lexicon& lex, string word) {
    // base case 1) reach invalid word 2) reach final letter
    if (!lex.contains(word)) {
        return false;
    }
    if (word.length() == 1) {
        return true;
    }
    // recursive case: try removing every letter and if any succeeds, return true
    for (int i = 0; i < word.length(); i++) {
        string remainingWord = word.substr(0, i) + word.substr(i + 1);
        if (isShrinkable(lex, remainingWord)) {
            return true;
        }
    }
    return false;
}
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Subsets
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Subsets

Given a group of people, generate all possible teams, or subsets, of 

these people:
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Subsets

Given a group of people, generate all possible teams, or subsets, of 

these people:
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{}

{“Amrita”}

{“Elyse”}

{“Taylor”}

{“Amrita”, “Elyse”}

{“Amrita”, “Taylor”}

{“Elyse”, “Taylor”}

{“Amrita”, “Elyse”, “Taylor”}



Subsets

Given a group of people, generate all possible teams, or subsets, of 

those people:
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{}

{“Amrita”}

{“Elyse”}

{“Taylor”}

{“Amrita”, “Elyse”}

{“Amrita”, “Taylor”}

{“Elyse”, “Taylor”}

{“Amrita”, “Elyse”, “Taylor”}

Recursive Backtracking: 

Generate all solutions to 

a problem



Subsets

Given a group of people, generate all possible teams, or subsets, of 

those people:
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{}

{“Amrita”}

{“Elyse”}

{“Taylor”}

{“Amrita”, “Elyse”}

{“Amrita”, “Taylor”}

{“Elyse”, “Taylor”}

{“Amrita”, “Elyse”, “Taylor”}



Subsets

Given a group of people, generate all possible teams, or subsets, of 

those people:
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{}

{“Amrita”}

{“Elyse”}

{“Taylor”}

{“Amrita”, “Elyse”}

{“Amrita”, “Taylor”}

{“Elyse”, “Taylor”}

{“Amrita”, “Elyse”, “Taylor”}

Half the subsets contain 

“Amrita”



Subsets

Given a group of people, generate all possible teams, or subsets, of 

those people:
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{}

{“Amrita”}

{“Elyse”}

{“Taylor”}

{“Amrita”, “Elyse”}

{“Amrita”, “Taylor”}

{“Elyse”, “Taylor”}

{“Amrita”, “Elyse”, “Taylor”}

Half the subsets contain 

“Elyse”



Subsets

Given a group of people, generate all possible teams, or subsets, of 

those people:

165

{}

{“Amrita”}

{“Elyse”}

{“Taylor”}

{“Amrita”, “Elyse”}

{“Amrita”, “Taylor”}

{“Elyse”, “Taylor”}

{“Amrita”, “Elyse”, “Taylor”}

Half the subsets contain 

“Taylor”



Subsets

Given a group of people, generate all possible teams, or subsets, of 

those people:
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{}

{“Amrita”}

{“Elyse”}

{“Taylor”}

{“Amrita”, “Elyse”}

{“Amrita”, “Taylor”}

{“Elyse”, “Taylor”}

{“Amrita”, “Elyse”, “Taylor”}

Half the subsets that 

contain “Taylor” also 

contain “Amrita”



Subsets

Given a group of people, generate all possible teams, or subsets, of 

those people:
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{}

{“Amrita”}

{“Elyse”}

{“Taylor”}

{“Amrita”, “Elyse”}

{“Amrita”, “Taylor”}

{“Elyse”, “Taylor”}

{“Amrita”, “Elyse”, “Taylor”}

Half the subsets that 

contain “Taylor” and 

“Amrita”, also contain 

“Elyse”



Making a Decision Tree

• Decision at each step (each level of the tree)

• Options at each decision (branches from each node)

• Information you need to store along the way
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Making a Decision Tree

• Decision at each step (each level of the tree)
• Are we going to include a given element in our subset?

• Options at each decision (branches from each node)
• Include the element

• Don’t Include the element

• Information you need to store along the way
• Set you’ve built so far
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No Amrita Yes Amrita
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No Amrita Yes Amrita

No Elyse No ElyseYes Elyse Yes Elyse
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No Amrita Yes Amrita

No Elyse No Elyse

No 
Taylor

No 
Taylor

No 
Taylor

No 
Taylor

Yes Elyse Yes Elyse

Yes 
Taylor

Yes 
Taylor

Yes 
Taylor

Yes 
Taylor



Making a Decision Tree

• Decision at each step (each level of the tree)
• Are we going to include a given element in our subset?

• Options at each decision (branches from each node)
• Include the element

• Don’t Include the element

• Information you need to store along the way
• Set you’ve built so far

• Remaining elements in original set
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Remaining Elements:
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Remaining Elements:

{“Amrita”, 
“Elyse”, 
“Taylor”}
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Remaining Elements:

{“Amrita”, 
“Elyse”, 
“Taylor”}

{“Elyse”, 
“Taylor”}
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Remaining Elements:

{“Amrita”, 
“Elyse”, 
“Taylor”}

{“Elyse”, 
“Taylor”}

{“Taylor”}
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Remaining Elements:

{“Amrita”, 
“Elyse”, 
“Taylor”}

{“Elyse”, 
“Taylor”}

{“Taylor”}

{}
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Remaining Elements:

{“Amrita”, 
“Elyse”, 
“Taylor”}

{“Elyse”, 
“Taylor”}

{“Taylor”}

{}

Base Case: No remaining people to choose from
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Remaining Elements:

{“Amrita”, 
“Elyse”, 
“Taylor”}

{“Elyse”, 
“Taylor”}

{“Taylor”}

{}

Recursive Case: Pick someone from set. Choose whether to include them.
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Let’s Code It Up!



Takeaways

• "Choose / explore / unchoose" pattern in backtracking
• This is our first time seeing an explicit “unchoose” step
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// choose 

string elem = remaining.first();

remaining = remaining - elem;

// explore

listSubsetHelper(remaining, chosen);

chosen = chosen + elem

listSubsetHelper(remaining, chosen);

// unchoose this letter by adding it back to possible choices

chosen = chosen - elem;

remaining = remaining + elem;



Takeaways

• "Choose / explore / unchoose" pattern in backtracking
• This is our first time seeing an explicit “unchoose” step
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// choose 

string elem = remaining.first();

remaining = remaining - elem;

// explore

listSubsetHelper(remaining, chosen); // do not add elem to chosen

chosen = chosen + elem

listSubsetHelper(remaining, chosen);

// unchoose this letter by adding it back to possible choices

chosen = chosen - elem;

remaining = remaining + elem;



Takeaways

• "Choose / explore / unchoose" pattern in backtracking
• This is our first time seeing an explicit “unchoose” step
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// choose 

string elem = remaining.first();

remaining = remaining - elem;

// explore

listSubsetHelper(remaining, chosen);

chosen = chosen + elem

listSubsetHelper(remaining, chosen); // add elem to chosen

// unchoose by adding it back to possible choices

chosen = chosen - elem;

remaining = remaining + elem;



Takeaways

• "Choose / explore / unchoose" pattern in backtracking
• This is our first time seeing an explicit “unchoose” step

• Necessary because we’re passing sets by reference and editing them
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// choose 

string elem = remaining.first();

remaining = remaining - elem;

// explore

listSubsetHelper(remaining, chosen);

chosen = chosen + elem

listSubsetHelper(remaining, chosen);

// unchoose by adding it back to possible choices

chosen = chosen - elem;

remaining = remaining + elem;



Takeaways

• "Choose / explore / unchoose" pattern in backtracking
• This is our first time seeing an explicit “unchoose” step

• Necessary because we’re passing sets by reference and editing them

• Our first example of using ADTs with recursion, and we’ll see more 

today
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Choose / explore / unchoose

• Implicit “unchoose” step
• Pass by value; usually when memory constraints aren’t an issue
• Works because you’re making edits to a copy
• E.g. Building up a string over time

• Explicit “unchoose” step
• Uses pass by reference; usually with large data structures
• “Undoing” prior modifications to structure
• E.g. Generating subsets (one set passed around by reference to track
• subsets)
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Choose / explore / unchoose 

• Implicit “unchoose” step
• Pass by value; usually when memory constraints aren’t an issue
• Works because you’re making edits to a copy
• E.g. Building up a string over time

• Explicit “unchoose” step
• Uses pass by reference; usually with large data structures
• “Undoing” prior modifications to structure
• E.g. Generating subsets (one set passed around by reference to track
• subsets)
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Solving Recursive Backtracking

• Which of our three use cases does our problem fall into? (generate/count all 

solutions, find one solution/prove its existence, or pick one best solution)
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Solving Recursive Backtracking

• Which of our three use cases does our problem fall into? (generate/count all 

solutions, find one solution/prove its existence, or pick one best solution)

• What’s the provided function prototype and requirements? Do we need a helper 

function?
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Solving Recursive Backtracking

• Which of our three use cases does our problem fall into? (generate/count all 

solutions, find one solution/prove its existence, or pick one best solution)

• What’s the provided function prototype and requirements? Do we need a helper 

function?
• What are we returning as our solution?

• Do we care about returning or keeping track of the path we took to get to our solution? 

If yes, what parameters are we already given and what others might be useful?
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Solving Recursive Backtracking

• Which of our three use cases does our problem fall into? (generate/count all 

solutions, find one solution/prove its existence, or pick one best solution)

• What’s the provided function prototype and requirements? Do we need a helper 

function?
• What are we returning as our solution?

• Do we care about returning or keeping track of the path we took to get to our solution? 

If yes, what parameters are we already given and what others might be useful?

• What are our base and recursive cases?
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Solving Recursive Backtracking

• Which of our three use cases does our problem fall into? (generate/count all 

solutions, find one solution/prove its existence, or pick one best solution)

• What’s the provided function prototype and requirements? Do we need a helper 

function?
• What are we returning as our solution?

• Do we care about returning or keeping track of the path we took to get to our solution?  

If yes, what parameters are we already given and what others might be useful?

• What are our base and recursive cases?
• What does the decision tree look like? (decisions, options, what to keep track of)

• In addition to what we’re building up, are there any additional constraints on our 

solutions?

• Does it make sense to use an implicit or explicit unchoose step for the recursion?
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Fixed-size Teams
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Subsets vs Combinations

• Our goal: Pick a combination of 3 graders out of a group of 5.
• More useful than our generating subsets solution!
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Subsets vs Combinations

• Our goal: Pick a combination of 3 graders out of a group of 5.
• More useful than our generating subsets solution!

• This sounds very similar to the problem we solved when we generated subsets
• These 3 graders would be a subset of the overall group of 5.
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Subsets vs Combinations

• Our goal: Pick a combination of 3 graders out of a group of 5.
• More useful than our generating subsets solution!

• This sounds very similar to the problem we solved when we generated subsets
• These 3 graders would be a subset of the overall group of 5.

• What distinguishes a combination from a subset?
• Combinations always have a specified size, unlike subsets (which can be any size)

• We can think of combinations as "subsets with constraints"
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Subsets vs Combinations

• Our goal: Pick a combination of 3 graders out of a group of 5.
• More useful than our generating subsets solution!

• This sounds very similar to the problem we solved when we generated subsets
• These 3 graders would be a subset of the overall group of 5.

• What distinguishes a combination from a subset?
• Combinations always have a specified size, unlike subsets (which can be any size)

• We can think of combinations as "subsets with constraints"

• Could we use the code from before, generate all subsets, and then filter out all 

those of size 3?
• We could, but that would be inefficient. Let's develop a better approach for 

combinations!
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Solving Recursive Backtracking

• Which of our three use cases does our problem fall into? (generate/count all 

solutions, find one solution/prove its existence, or pick one best solution)

• What’s the provided function prototype and requirements? Do we need a helper 

function?
• What are we returning as our solution?

• Do we care about returning or keeping track of the path we took to get to our solution?  

If yes, what parameters are we already given and what others might be useful?

• What are our base and recursive cases?
• What does the decision tree look like? (decisions, options, what to keep track of)

• In addition to what we’re building up, are there any additional constraints on our 

solutions?

• Does it make sense to use an implicit or explicit unchoose step for the recursion?
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Solving Recursive Backtracking

• Which of our three use cases does our problem fall into? (generate/count all 

solutions, find one solution/prove its existence, or pick one best solution)

• What’s the provided function prototype and requirements? Do we need a 

helper function?
• What are we returning as our solution?

• Do we care about returning or keeping track of the path we took to get to our solution?  

If yes, what parameters are we already given and what others might be useful?

• What are our base and recursive cases?
• What does the decision tree look like? (decisions, options, what to keep track of)

• In addition to what we’re building up, are there any additional constraints on our 

solutions?

• Does it make sense to use an implicit or explicit unchoose step for the recursion?
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What are we returning as our solution?

• Each combination of k graders can be represented as a 

Set<string>.

• In previous string examples, we were just printing out all solutions. 

But what if we wanted to store all of them to be able to do 

something with them later?

• We want to return a container holding all possible combinations:

Set<Set<string>>
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What are we returning as our solution?

• Each combination of k graders can be represented as a 

Set<string>.

• In previous string examples, we were just printing out all solutions. 

But what if we wanted to store all of them to be able to do 

something with them later?

• We want to return a container holding all possible combinations

203

Set<Set<string>> combinationsOf(Set<string>& graders, int k)



Do we need a helper function?

Set<Set<string>> combinationsOf(Set<string>& graders, int k)
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Do we need a helper function?

Set<Set<string>> combinationsOf(Set<string>& graders, int k)

Set<Set<string>> combinationsHelper(Set<string>& remaining, 
int k, Set<string>& chosen)

205



Solving Recursive Backtracking

• Which of our three use cases does our problem fall into? (generate/count all 

solutions, find one solution/prove its existence, or pick one best solution)

• What’s the provided function prototype and requirements? Do we need a helper 

function?
• What are we returning as our solution?

• Do we care about returning or keeping track of the path we took to get to our solution?  

If yes, what parameters are we already given and what others might be useful?

• What are our base and recursive cases?
• What does the decision tree look like? (decisions, options, what to keep track of)

• In addition to what we’re building up, are there any additional constraints on our 

solutions?

• Does it make sense to use an implicit or explicit unchoose step for the recursion?

206



What are the base and recursive cases?

• Base cases
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What are the base and recursive cases?

• Base cases
• Found k graders

• There aren’t enough graders remaining
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What are the base and recursive cases?

• Base cases
• Found k graders

• There aren’t enough graders remaining

• Recursive cases

209



What are the base and recursive cases?

• Base cases
• Found k graders

• There aren’t enough graders remaining

• Recursive cases
• Pick someone from set and choose whether or not to include them

210



Implicit or explicit unchoose step?

211



Implicit or explicit unchoose step?

• Explicit!
• We’re passing in our set by reference, so we need to undo any choices we 

make
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Let’s Code It Up!
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Next Class

• Recursive backtracking to solve mazes!

• Misc.
• Const reference

• Structs

• Classes and Object-Oriented Programming
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