
Recursive Backtracking 2
Amrita Kaur

July 19, 2023

Contributions made from previous CS106B Instructors

Announcements

• Assignment 3, Part 2 will be released today after class
• YEAH Hours are today at 3pm on Zoom

2

https://stanford.zoom.us/j/5416618770?pwd=dC84V1VqbmRvQXMvN1FSOFNIU2dNdz09

Roadmap

Core
Tools

C++

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

3

Algorithmic
Analysis

Recursion

Review

4

Coin Sequences

• You’re playing a (rather boring) game in which you flip some

number of coins one by one and see whether you get heads or tails

• You’d like to know all of the possible sequences you might flip

5

Coin Sequences This is called a decision tree:
at each point we have

branching decisions.

HH HT TH TT

Flip heads Flip tails

Flip tailsFlip headsFlip tailsFlip heads

Coin Sequences

HH HT TH TT

Flip heads Flip tails

Flip tailsFlip headsFlip tailsFlip heads

Height of the tree:
Number of decisions
we need to make

Number of Flips
Remaining

2

1

0

Coin Sequences

HH HT TH TT

Flip heads Flip tails

Flip tailsFlip headsFlip tailsFlip heads

Width of the tree:
Number of options
at each decision

Coin Sequences

HH HT TH TT

Flip heads Flip tails

Flip tailsFlip headsFlip tailsFlip heads

Number of Flips
Remaining

2

1

0

Recursive cases:
Add H or T to sequence

Coin Sequences

HH HT TH TT

Flip heads Flip tails

Flip tailsFlip headsFlip tailsFlip heads

Number of Flips
Remaining

2

1

0

Recursive cases:
Add H or T to sequence

Base case:
Out of flips

Two Types of Recursion

Basic recursion

• One repeated task that builds up a
solution as you come back up the call
stack

• The final base case defines the initial
seed of the solution and each call
contributes a little bit to the solution

• Initial call to the recursive function
produces the final solution

11

Backtracking recursion

• Build up many possible solutions
through multiple recursive calls at
each step

• Seed the initial recursive call with an
“empty” solution

• At each base case, you have a
potential solution

factorial(2)

factorial(1)

factorial(0)

Solution Code for Coin Sequences
void generateSequenceHelper(int flipsRemaining, string sequence) {

 // Base case: flipsRemaining = 0, no more flips

 if (flipsRemaining == 0) {

 cout << sequence << endl;

 } else {

 // Recursive cases (when flipsRemaining > 0)

 generateSequenceHelper(flipsRemaining - 1, sequence + 'H'); // Add H to the sequence

 generateSequenceHelper(flipsRemaining - 1, sequence + 'T'); // OR add T to the sequence

 }

}

void generateSequences(int numCoins) {

 generateSequenceHelper(numCoins, "");

}

12

13

int main () {
generateSequences(3);
return 0;

}

14

int main () {
generateSequences(3);
return 0;

}

main()

15

int main () {
generateSequences(3);
return 0;

}

main()

16

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

17

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

18

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

19

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

20

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

21

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

22

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

23

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

24

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

25

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

26

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

27

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

28

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

29

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HH”

30

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HH”

31

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HH”

32

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HH”

33

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HH”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

34

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HH”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HHH”

35

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HH”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HHH”

36

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HH”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HHH”

37

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HH”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HHH”

HHH

Console:

38

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HH”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HHH”

HHH

Console:

39

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HH”HHH

Console:

40

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HH”HHH

Console:

41

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HH”HHH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

42

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HH”HHH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HHT”

43

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HH”HHH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HHT”

44

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HH”HHH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HHT”

45

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HH”HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HHT”

46

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HH”HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HHT”

47

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HH”HHH
HHT

Console:

48

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HH”HHH
HHT

Console:

49

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT

Console:

50

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT

Console:

51

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

52

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

53

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

54

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

55

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

56

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

57

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HTH”

58

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HTH”

59

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HTH”

60

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HTH”

61

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HTH”

62

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

63

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

64

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

65

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HTT”

66

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HTT”

67

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HTT”

68

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH
HTT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HTT”

69

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH
HTT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“HTT”

70

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH
HTT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

71

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH
HTT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”

72

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH
HTT

Console:

73

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“H”

HHH
HHT
HTH
HTT

Console:

74

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

HHH
HHT
HTH
HTT

Console:

75

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

HHH
HHT
HTH
HTT

Console:

76

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

HHH
HHT
HTH
HTT

Console:

77

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH
HTT

Console:

78

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH
HTT

Console:

79

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH
HTT

Console:

80

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH
HTT

Console:

81

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

HHH
HHT
HTH
HTT

Console:

82

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH
HHT
HTH
HTT

Console:

83

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH
HHT
HTH
HTT

Console:

84

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH
HHT
HTH
HTT

Console:

85

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH
HHT
HTH
HTT

Console:

86

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

HHH
HHT
HTH
HTT

Console:

87

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“THH”

HHH
HHT
HTH
HTT

Console:

88

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“THH”

HHH
HHT
HTH
HTT

Console:

89

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“THH”

HHH
HHT
HTH
HTT

Console:

90

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“THH”

HHH
HHT
HTH
HTT
THH

Console:

91

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“THH”

HHH

Console:

HHH
HHT
HTH
HTT
THH

92

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH

Console:

HHH
HHT
HTH
HTT
THH

93

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH

Console:

HHH
HHT
HTH
HTT
THH

94

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

HHH
HHT
HTH
HTT
THH

95

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“THT”

HHH
HHT
HTH
HTT
THH

96

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“THT”

HHH
HHT
HTH
HTT
THH

97

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“THT”

HHH
HHT
HTH
HTT
THH

98

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“THT”

HHH
HHT
HTH
HTT
THH
THT

99

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“THT”

HHH
HHT
HTH
HTT
THH
THT

100

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH
HHT

Console:

HHH
HHT
HTH
HTT
THH
THT

101

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TH”HHH
HHT

Console:

HHH
HHT
HTH
HTT
THH
THT

102

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

HHH
HHT
HTH
HTT
THH
THT

103

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

HHH
HHT
HTH
HTT
THH
THT

104

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

HHH
HHT
HTH
HTT
THH
THT

105

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“HT”HHH
HHT
HTH
HTT
THH
THT

106

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”HHH
HHT
HTH
HTT
THH
THT

107

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”HHH
HHT
HTH
HTT
THH
THT

108

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”HHH
HHT
HTH
HTT
THH
THT

109

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

HHH
HHT
HTH
HTT
THH
THT

110

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“TTH”

HHH
HHT
HTH
HTT
THH
THT

111

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“TTH”

HHH
HHT
HTH
HTT
THH
THT

112

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“TTH”

HHH
HHT
HTH
HTT
THH
THT

113

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“TTH”

HHH
HHT
HTH
HTT
THH
THT
TTH

114

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“TTH”

HHH
HHT
HTH
HTT
THH
THT
TTH

115

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”HHH
HHT
HTH
HTT
THH
THT
TTH

116

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”HHH
HHT
HTH
HTT
THH
THT
TTH

117

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

HHH
HHT
HTH
HTT
THH
THT
TTH

118

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“TTT”

HHH
HHT
HTH
HTT
THH
THT
TTH

119

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“TTT”

HHH
HHT
HTH
HTT
THH
THT
TTH

120

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“TTT”

HHH
HHT
HTH
HTT
THH
THT
TTH

121

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH
HTT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“TTT”

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT

122

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH
HTT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

0

“TTT”

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT

123

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH
HTT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”HHH
HHT
HTH
HTT
THH
THT
TTH
TTT

124

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH
HTT

Console:

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem:

seq:

1

“TT”HHH
HHT
HTH
HTT
THH
THT
TTH
TTT

125

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH
HTT

Console:

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT

126

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

genSeqsHelper()

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
} flipsRem:

seq:

2

“T”

HHH
HHT
HTH
HTT

Console:

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT

127

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

HHH
HHT
HTH
HTT

Console:

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT

128

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

void genSeqsHelper (int flipsRem, string seq) {
if (flipsRem == 0) {

cout << seq << endl;
} else {

generateSeqsHelper(flipsRem-1, seq + ‘H’);
generateSeqsHelper(flipsRem-1, seq + ‘T’);

}
}

genSeqsHelper()
flipsRem: 3

seq: “”

HHH
HHT
HTH
HTT

Console:

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT

129

int main () {
generateSequences(3);
return 0;

}

main()
void generateSequences (int numCoins) {

genSeqsHepler(numCoins, “”);
}

generateSequences()
numCoins: 3

HHH
HHT
HTH
HTT

Console:

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT

130

int main () {
generateSequences(3);
return 0;

}

main()

HHH
HHT
HTH
HTT

Console:

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT

131

int main () {
generateSequences(3);
return 0;

}

main()

HHH
HHT
HTH
HTT

Console:

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT

132

int main () {
generateSequences(3);
return 0;

}

main()

HHH
HHT
HTH
HTT

Console:

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT

133

HHH
HHT
HTH
HTT

Console:

HHH
HHT
HTH
HTT
THH
THT
TTH
TTT

3 Problems to Solve with Backtracking

1. Generate all solutions to a problem or count number of solutions

2. Find one specific solution or prove that one exists

3. Find the best possible solution to a problem

134

All of these involve exploring many possible
solutions, rather than proceeding down a linear

path towards one solution.

Word Jumble

• We’d like to print every ordering of “TEYPT” to solve the puzzle

• This is much like coin sequences, but instead of choosing H or T, we

are choosing a letter at each step

135

Word Jumble - ‘tca’

136

“”

Word Jumble - ‘tca’

137

“”

“t” “a”“c”

Word Jumble - ‘tca’

138

“”

“t” “a”“c”

“tc” “ta” “ct” “ca” “at” “ac”

Word Jumble - ‘tca’

139

“”

“t” “a”“c”

“tc” “ta”

“tca” “tac”

“ct” “ca”

“cta” “cat”

“at” “ac”

“atc” “act”

Word Jumble - ‘tca’

140

“”

“t” “a”“c”

“tc” “ta”

“tca” “tac”

“ct” “ca”

“cta” “cat”

“at” “ac”

“atc” “act”

Recursive cases:
Decide what letter to add

Word Jumble - ‘tca’

141

“”

“t” “a”“c”

“tc” “ta”

“tca” “tac”

“ct” “ca”

“cta” “cat”

“at” “ac”

“atc” “act”

Recursive cases:
Decide what letter to add

Base case:
Out of letters

Permutations Solution Code
void generatePermutationsHelper(string lettersRemaining, string sequence) {

 // Base case: lettersRemaining = 0, no more letters to choose from

 if (lettersRemaining.length() == 0) {

 cout << sequence << endl;

 } else {

 // Many recursive cases (when lettersRemaining > 0)

 for (int i = 0; i < lettersRemaining.length(); i++) {

 char letter = lettersRemaining[i]; // choose one of our remaining letters to build on sequence

 generatePermutationsHelper(lettersRemaining.substr(0, i) + lettersRemaining.substr(i + 1),

sequence + letter);

 }

 }

}

void generatePermutations(string word) {

 generatePermutationsHelper(word, "");

}

142

Takeaways

• "Choose / explore / unchoose" pattern in backtracking

143

for (int i = 0; i < lettersRemaining.length(); i++) {

// choose a letter

char letter = lettersRemaining[i];

// explore this choice by making a recursive call

generatePermutationsHelper(lettersRemaining.substr(0, i) +

lettersRemaining.substr(i + 1), sequence + letter)

// unchoose this letter by not including it in our sequence next loop

}

Takeaways

• "Choose / explore / unchoose" pattern in backtracking

• It is important to keep track of the decisions we've made so far and

the decisions we have left to make

144

void generatePermutationsHelper(string lettersRemaining, string sequence) {

145

“tca”

“”string sequence
string lettersRemaining

146

“tca”

“t”

“”

“ca”

“c”

“ta”

“a”

“tc”

string sequence
string lettersRemaining

147

“tca”

“t”

“tc” “ta”

“”

“a” “c”

“ca”

“c”

“ct” “ca”

“a” “t”

“ta”

“a”

“at” “ac”

“c” “t”

“tc”

string sequence
string lettersRemaining

148

“tca”

“t”

“tc” “ta”

“tca” “tac”

“”

“” “”

“a” “c”

“ca”

“c”

“ct” “ca”

“cta” “cat”

“” “”

“a” “t”

“ta”

“a”

“at” “ac”

“atc” “act”

“” “”

“c” “t”

“tc”

string sequence
string lettersRemaining

Takeaways

• "Choose / explore / unchoose" pattern in backtracking

• It is important to keep track of the decisions we've made so far and

the decisions we have left to make

149

void generatePermutationsHelper(string lettersRemaining, string sequence) {

Takeaways

• "Choose / explore / unchoose" pattern in backtracking

• It is important to keep track of the decisions we've made so far and

the decisions we have left to make

• Backtracking recursion can have variable branching factors at each

level

150

“”

“T” “E” “T”“P”“Y”

“TE” “TT”“TP”“TY” …

3 Problems to Solve with Backtracking

1. Generate all solutions to a problem or count number of solutions

2. Find one specific solution or prove that one exists

3. Find the best possible solution to a problem

151

All of these involve exploring many possible
solutions, rather than proceeding down a linear

path towards one solution.

3 Problems to Solve with Backtracking

1. Generate all solutions to a problem or count number of solutions

2. Find one specific solution or prove that one exists

3. Find the best possible solution to a problem

152

All of these involve exploring many possible
solutions, rather than proceeding down a linear

path towards one solution.

Shrinkable Words

• A shrinkable word is a word that can be reduced down to one letter

by removing one letter at a time, leaving a valid word at each step

• Idea: Let’s use a decision tree to remove letters and determine if a

word is shrinkabe!

153

Shrinkable Words Decision Tree

154

“cart”

“art” “crt” “car”“cat”

“rt” “ar”“at” “rt” “cr”“ct” “at” “ca”“ct” “ar” “ca”“cr”

“a” “t” “a” “r” “r” “t” “c” “t” “c” “r” “a” “t” “c” “t” “c” “a” “a” “r” “c” “r” “c” “a”“r” “t”

Shrinkable Words

Base cases:

• We reach an invalid word (failure)
• We get down to a single-letter word (success)

Recursive cases:

• The word is shrinkable if you can remove any letter and get a
shrinkable word

• The word is not shrinkable if no matter what letter you remove, it’s
not shrinkable

155

Lexicon

How do we check if a word is valid? We have an ADT for that:

#include “lexicon.h” (documentation here)

Lexicon lex("res/EnglishWords.txt"); // create from file

lex.contains("koala"); // returns true

lex.contains("zzzzz"); // returns false

// returns true if there are any words starting with "fi" in the lexicon

lex.containsPrefix("fi");

156

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1136/materials/cppdoc/Lexicon-class.html

Solution

bool isShrinkable(Lexicon& lex, string word) {
 // base case 1) reach invalid word 2) reach final letter
 if (!lex.contains(word)) {
 return false;
 }
 if (word.length() == 1) {
 return true;
 }
 // recursive case: try removing every letter and if any succeeds, return true
 for (int i = 0; i < word.length(); i++) {
 string remainingWord = word.substr(0, i) + word.substr(i + 1);
 if (isShrinkable(lex, remainingWord)) {
 return true;
 }
 }
 return false;
}

157

Subsets

158

Subsets

Given a group of people, generate all possible teams, or subsets, of

these people:

159

Subsets

Given a group of people, generate all possible teams, or subsets, of

these people:

160

{}

{“Amrita”}

{“Elyse”}

{“Taylor”}

{“Amrita”, “Elyse”}

{“Amrita”, “Taylor”}

{“Elyse”, “Taylor”}

{“Amrita”, “Elyse”, “Taylor”}

Subsets

Given a group of people, generate all possible teams, or subsets, of

those people:

161

{}

{“Amrita”}

{“Elyse”}

{“Taylor”}

{“Amrita”, “Elyse”}

{“Amrita”, “Taylor”}

{“Elyse”, “Taylor”}

{“Amrita”, “Elyse”, “Taylor”}

Recursive Backtracking:

Generate all solutions to

a problem

Subsets

Given a group of people, generate all possible teams, or subsets, of

those people:

162

{}

{“Amrita”}

{“Elyse”}

{“Taylor”}

{“Amrita”, “Elyse”}

{“Amrita”, “Taylor”}

{“Elyse”, “Taylor”}

{“Amrita”, “Elyse”, “Taylor”}

Subsets

Given a group of people, generate all possible teams, or subsets, of

those people:

163

{}

{“Amrita”}

{“Elyse”}

{“Taylor”}

{“Amrita”, “Elyse”}

{“Amrita”, “Taylor”}

{“Elyse”, “Taylor”}

{“Amrita”, “Elyse”, “Taylor”}

Half the subsets contain

“Amrita”

Subsets

Given a group of people, generate all possible teams, or subsets, of

those people:

164

{}

{“Amrita”}

{“Elyse”}

{“Taylor”}

{“Amrita”, “Elyse”}

{“Amrita”, “Taylor”}

{“Elyse”, “Taylor”}

{“Amrita”, “Elyse”, “Taylor”}

Half the subsets contain

“Elyse”

Subsets

Given a group of people, generate all possible teams, or subsets, of

those people:

165

{}

{“Amrita”}

{“Elyse”}

{“Taylor”}

{“Amrita”, “Elyse”}

{“Amrita”, “Taylor”}

{“Elyse”, “Taylor”}

{“Amrita”, “Elyse”, “Taylor”}

Half the subsets contain

“Taylor”

Subsets

Given a group of people, generate all possible teams, or subsets, of

those people:

166

{}

{“Amrita”}

{“Elyse”}

{“Taylor”}

{“Amrita”, “Elyse”}

{“Amrita”, “Taylor”}

{“Elyse”, “Taylor”}

{“Amrita”, “Elyse”, “Taylor”}

Half the subsets that

contain “Taylor” also

contain “Amrita”

Subsets

Given a group of people, generate all possible teams, or subsets, of

those people:

167

{}

{“Amrita”}

{“Elyse”}

{“Taylor”}

{“Amrita”, “Elyse”}

{“Amrita”, “Taylor”}

{“Elyse”, “Taylor”}

{“Amrita”, “Elyse”, “Taylor”}

Half the subsets that

contain “Taylor” and

“Amrita”, also contain

“Elyse”

Making a Decision Tree

• Decision at each step (each level of the tree)

• Options at each decision (branches from each node)

• Information you need to store along the way

168

Making a Decision Tree

• Decision at each step (each level of the tree)
• Are we going to include a given element in our subset?

• Options at each decision (branches from each node)
• Include the element

• Don’t Include the element

• Information you need to store along the way
• Set you’ve built so far

169

170

171

No Amrita Yes Amrita

172

No Amrita Yes Amrita

No Elyse No ElyseYes Elyse Yes Elyse

173

No Amrita Yes Amrita

No Elyse No Elyse

No
Taylor

No
Taylor

No
Taylor

No
Taylor

Yes Elyse Yes Elyse

Yes
Taylor

Yes
Taylor

Yes
Taylor

Yes
Taylor

Making a Decision Tree

• Decision at each step (each level of the tree)
• Are we going to include a given element in our subset?

• Options at each decision (branches from each node)
• Include the element

• Don’t Include the element

• Information you need to store along the way
• Set you’ve built so far

• Remaining elements in original set

174

175

Remaining Elements:

176

Remaining Elements:

{“Amrita”,
“Elyse”,
“Taylor”}

177

Remaining Elements:

{“Amrita”,
“Elyse”,
“Taylor”}

{“Elyse”,
“Taylor”}

178

Remaining Elements:

{“Amrita”,
“Elyse”,
“Taylor”}

{“Elyse”,
“Taylor”}

{“Taylor”}

179

Remaining Elements:

{“Amrita”,
“Elyse”,
“Taylor”}

{“Elyse”,
“Taylor”}

{“Taylor”}

{}

180

Remaining Elements:

{“Amrita”,
“Elyse”,
“Taylor”}

{“Elyse”,
“Taylor”}

{“Taylor”}

{}

Base Case: No remaining people to choose from

181

Remaining Elements:

{“Amrita”,
“Elyse”,
“Taylor”}

{“Elyse”,
“Taylor”}

{“Taylor”}

{}

Recursive Case: Pick someone from set. Choose whether to include them.

182

Let’s Code It Up!

Takeaways

• "Choose / explore / unchoose" pattern in backtracking
• This is our first time seeing an explicit “unchoose” step

183

// choose

string elem = remaining.first();

remaining = remaining - elem;

// explore

listSubsetHelper(remaining, chosen);

chosen = chosen + elem

listSubsetHelper(remaining, chosen);

// unchoose this letter by adding it back to possible choices

chosen = chosen - elem;

remaining = remaining + elem;

Takeaways

• "Choose / explore / unchoose" pattern in backtracking
• This is our first time seeing an explicit “unchoose” step

184

// choose

string elem = remaining.first();

remaining = remaining - elem;

// explore

listSubsetHelper(remaining, chosen); // do not add elem to chosen

chosen = chosen + elem

listSubsetHelper(remaining, chosen);

// unchoose this letter by adding it back to possible choices

chosen = chosen - elem;

remaining = remaining + elem;

Takeaways

• "Choose / explore / unchoose" pattern in backtracking
• This is our first time seeing an explicit “unchoose” step

185

// choose

string elem = remaining.first();

remaining = remaining - elem;

// explore

listSubsetHelper(remaining, chosen);

chosen = chosen + elem

listSubsetHelper(remaining, chosen); // add elem to chosen

// unchoose by adding it back to possible choices

chosen = chosen - elem;

remaining = remaining + elem;

Takeaways

• "Choose / explore / unchoose" pattern in backtracking
• This is our first time seeing an explicit “unchoose” step

• Necessary because we’re passing sets by reference and editing them

186

// choose

string elem = remaining.first();

remaining = remaining - elem;

// explore

listSubsetHelper(remaining, chosen);

chosen = chosen + elem

listSubsetHelper(remaining, chosen);

// unchoose by adding it back to possible choices

chosen = chosen - elem;

remaining = remaining + elem;

Takeaways

• "Choose / explore / unchoose" pattern in backtracking
• This is our first time seeing an explicit “unchoose” step

• Necessary because we’re passing sets by reference and editing them

• Our first example of using ADTs with recursion, and we’ll see more

today

187

Choose / explore / unchoose

• Implicit “unchoose” step
• Pass by value; usually when memory constraints aren’t an issue
• Works because you’re making edits to a copy
• E.g. Building up a string over time

• Explicit “unchoose” step
• Uses pass by reference; usually with large data structures
• “Undoing” prior modifications to structure
• E.g. Generating subsets (one set passed around by reference to track
• subsets)

188

Choose / explore / unchoose

• Implicit “unchoose” step
• Pass by value; usually when memory constraints aren’t an issue
• Works because you’re making edits to a copy
• E.g. Building up a string over time

• Explicit “unchoose” step
• Uses pass by reference; usually with large data structures
• “Undoing” prior modifications to structure
• E.g. Generating subsets (one set passed around by reference to track
• subsets)

189

��

Solving Recursive Backtracking

• Which of our three use cases does our problem fall into? (generate/count all

solutions, find one solution/prove its existence, or pick one best solution)

190

Solving Recursive Backtracking

• Which of our three use cases does our problem fall into? (generate/count all

solutions, find one solution/prove its existence, or pick one best solution)

• What’s the provided function prototype and requirements? Do we need a helper

function?

191

Solving Recursive Backtracking

• Which of our three use cases does our problem fall into? (generate/count all

solutions, find one solution/prove its existence, or pick one best solution)

• What’s the provided function prototype and requirements? Do we need a helper

function?
• What are we returning as our solution?

• Do we care about returning or keeping track of the path we took to get to our solution?

If yes, what parameters are we already given and what others might be useful?

192

Solving Recursive Backtracking

• Which of our three use cases does our problem fall into? (generate/count all

solutions, find one solution/prove its existence, or pick one best solution)

• What’s the provided function prototype and requirements? Do we need a helper

function?
• What are we returning as our solution?

• Do we care about returning or keeping track of the path we took to get to our solution?

If yes, what parameters are we already given and what others might be useful?

• What are our base and recursive cases?

193

Solving Recursive Backtracking

• Which of our three use cases does our problem fall into? (generate/count all

solutions, find one solution/prove its existence, or pick one best solution)

• What’s the provided function prototype and requirements? Do we need a helper

function?
• What are we returning as our solution?

• Do we care about returning or keeping track of the path we took to get to our solution?

If yes, what parameters are we already given and what others might be useful?

• What are our base and recursive cases?
• What does the decision tree look like? (decisions, options, what to keep track of)

• In addition to what we’re building up, are there any additional constraints on our

solutions?

• Does it make sense to use an implicit or explicit unchoose step for the recursion?

194

Fixed-size Teams

195

Subsets vs Combinations

• Our goal: Pick a combination of 3 graders out of a group of 5.
• More useful than our generating subsets solution!

196

Subsets vs Combinations

• Our goal: Pick a combination of 3 graders out of a group of 5.
• More useful than our generating subsets solution!

• This sounds very similar to the problem we solved when we generated subsets
• These 3 graders would be a subset of the overall group of 5.

197

Subsets vs Combinations

• Our goal: Pick a combination of 3 graders out of a group of 5.
• More useful than our generating subsets solution!

• This sounds very similar to the problem we solved when we generated subsets
• These 3 graders would be a subset of the overall group of 5.

• What distinguishes a combination from a subset?
• Combinations always have a specified size, unlike subsets (which can be any size)

• We can think of combinations as "subsets with constraints"

198

Subsets vs Combinations

• Our goal: Pick a combination of 3 graders out of a group of 5.
• More useful than our generating subsets solution!

• This sounds very similar to the problem we solved when we generated subsets
• These 3 graders would be a subset of the overall group of 5.

• What distinguishes a combination from a subset?
• Combinations always have a specified size, unlike subsets (which can be any size)

• We can think of combinations as "subsets with constraints"

• Could we use the code from before, generate all subsets, and then filter out all

those of size 3?
• We could, but that would be inefficient. Let's develop a better approach for

combinations!

199

Solving Recursive Backtracking

• Which of our three use cases does our problem fall into? (generate/count all

solutions, find one solution/prove its existence, or pick one best solution)

• What’s the provided function prototype and requirements? Do we need a helper

function?
• What are we returning as our solution?

• Do we care about returning or keeping track of the path we took to get to our solution?

If yes, what parameters are we already given and what others might be useful?

• What are our base and recursive cases?
• What does the decision tree look like? (decisions, options, what to keep track of)

• In addition to what we’re building up, are there any additional constraints on our

solutions?

• Does it make sense to use an implicit or explicit unchoose step for the recursion?

200

Solving Recursive Backtracking

• Which of our three use cases does our problem fall into? (generate/count all

solutions, find one solution/prove its existence, or pick one best solution)

• What’s the provided function prototype and requirements? Do we need a

helper function?
• What are we returning as our solution?

• Do we care about returning or keeping track of the path we took to get to our solution?

If yes, what parameters are we already given and what others might be useful?

• What are our base and recursive cases?
• What does the decision tree look like? (decisions, options, what to keep track of)

• In addition to what we’re building up, are there any additional constraints on our

solutions?

• Does it make sense to use an implicit or explicit unchoose step for the recursion?

201

What are we returning as our solution?

• Each combination of k graders can be represented as a

Set<string>.

• In previous string examples, we were just printing out all solutions.

But what if we wanted to store all of them to be able to do

something with them later?

• We want to return a container holding all possible combinations:

Set<Set<string>>

202

What are we returning as our solution?

• Each combination of k graders can be represented as a

Set<string>.

• In previous string examples, we were just printing out all solutions.

But what if we wanted to store all of them to be able to do

something with them later?

• We want to return a container holding all possible combinations

203

Set<Set<string>> combinationsOf(Set<string>& graders, int k)

Do we need a helper function?

Set<Set<string>> combinationsOf(Set<string>& graders, int k)

204

Do we need a helper function?

Set<Set<string>> combinationsOf(Set<string>& graders, int k)

Set<Set<string>> combinationsHelper(Set<string>& remaining,
int k, Set<string>& chosen)

205

Solving Recursive Backtracking

• Which of our three use cases does our problem fall into? (generate/count all

solutions, find one solution/prove its existence, or pick one best solution)

• What’s the provided function prototype and requirements? Do we need a helper

function?
• What are we returning as our solution?

• Do we care about returning or keeping track of the path we took to get to our solution?

If yes, what parameters are we already given and what others might be useful?

• What are our base and recursive cases?
• What does the decision tree look like? (decisions, options, what to keep track of)

• In addition to what we’re building up, are there any additional constraints on our

solutions?

• Does it make sense to use an implicit or explicit unchoose step for the recursion?

206

What are the base and recursive cases?

• Base cases

207

What are the base and recursive cases?

• Base cases
• Found k graders

• There aren’t enough graders remaining

208

What are the base and recursive cases?

• Base cases
• Found k graders

• There aren’t enough graders remaining

• Recursive cases

209

What are the base and recursive cases?

• Base cases
• Found k graders

• There aren’t enough graders remaining

• Recursive cases
• Pick someone from set and choose whether or not to include them

210

Implicit or explicit unchoose step?

211

Implicit or explicit unchoose step?

• Explicit!
• We’re passing in our set by reference, so we need to undo any choices we

make

212

Let’s Code It Up!

213

Next Class

• Recursive backtracking to solve mazes!

• Misc.
• Const reference

• Structs

• Classes and Object-Oriented Programming

214

